Wastewater sequencing reveals community and variant dynamics of the collective human virome.

TitleWastewater sequencing reveals community and variant dynamics of the collective human virome.
Publication TypeJournal Article
Year of Publication2023
AuthorsTisza, M, Cregeen, SJavornik, Avadhanula, V, Zhang, P, Ayvaz, T, Feliz, K, Hoffman, KL, Clark, JR, Terwilliger, A, Ross, MC, Cormier, J, Moreno, H, Wang, L, Payne, K, Henke, D, Troisi, C, Wu, F, Rios, J, Deegan, J, Hansen, B, Balliew, J, Gitter, A, Zhang, K, Li, R, Bauer, CX, Mena, KD, Piedra, PA, Petrosino, JF, Boerwinkle, E, Maresso, AW
JournalNat Commun
Volume14
Issue1
Pagination6878
Date Published2023 Oct 28
ISSN2041-1723
KeywordsCities, Disease Outbreaks, Humans, Poliovirus, SARS-CoV-2, Virome, Wastewater
Abstract

Wastewater is a discarded human by-product, but its analysis may help us understand the health of populations. Epidemiologists first analyzed wastewater to track outbreaks of poliovirus decades ago, but so-called wastewater-based epidemiology was reinvigorated to monitor SARS-CoV-2 levels while bypassing the difficulties and pit falls of individual testing. Current approaches overlook the activity of most human viruses and preclude a deeper understanding of human virome community dynamics. Here, we conduct a comprehensive sequencing-based analysis of 363 longitudinal wastewater samples from ten distinct sites in two major cities. Critical to detection is the use of a viral probe capture set targeting thousands of viral species or variants. Over 450 distinct pathogenic viruses from 28 viral families are observed, most of which have never been detected in such samples. Sequencing reads of established pathogens and emerging viruses correlate to clinical data sets of SARS-CoV-2, influenza virus, and monkeypox viruses, outlining the public health utility of this approach. Viral communities are tightly organized by space and time. Finally, the most abundant human viruses yield sequence variant information consistent with regional spread and evolution. We reveal the viral landscape of human wastewater and its potential to improve our understanding of outbreaks, transmission, and its effects on overall population health.

DOI10.1038/s41467-023-42064-1
Alternate JournalNat Commun
PubMed ID37898601
PubMed Central IDPMC10613200
Grant ListT42 OH008421 / OH / NIOSH CDC HHS / United States
U19 AI144297 / AI / NIAID NIH HHS / United States